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ABSTRACT: Optical rotations and rotatory strengths are calculated for achiral, conjugated hydrocarbons
with the aim of determining to what extent the sum-over-π → π* rotatory strengths are sufficient to
account for nonresonant optical activity. The separability of σ and π electrons might provide a short cut to
the interpretation of chiroptical structure−property relations in some cases. It is shown that by restricting
the analyses to planar, C2v-symmetric π-systems and their one electron HOMO−LUMO excitations, an
intuitive understanding of the vexing property of optical activity is forthcoming for the following reasons:
Hückel wave functions are simply calculated, and in some cases, they can even be approximated by
inspection of structure. Wave functions of planar molecules can be multiplied with one another graphically or, in the mind’s eye,
to yield transition electric and magnetic moments. The gyration tensors have just one independent component. Transition dipole
moments are orthogonal to one another. And, the most optically active directions are found at their bisectors. Throughout,
emphasis is on the evaluation of long wavelength optical rotation, consistent with quantum chemical computation, using simple
models that are part of the fabric of organic chemistry pedagogy.

■ INTRODUCTION

Hückel theory is an approximate molecular orbital theory for
planar, conjugated hydrocarbons, whereas optical activity is
typically associated with molecular chirality, a consequence of
bonding in three dimensions. Hückel theory and optical activity
are subjects that at first blush brook no intersection. Why the
conjunction “and” in the title?
Giving voice to signs and magnitudes of specific rotations of

organic compounds has challenged scientists for 200 years, ever
since Biot discovered in 1815 that solutions of some organic
compounds are optically active.1 Subsequently, we have not been
able to interpret observed values of solution optical activity in
simple terms. The room temperature, sodium D-line, specific
rotation of (2R,3R)-tartaric acid is +12°, but there is not a
scientist in the world who can say why it is +12 rather than −12
or even −120, on the basis of the simple inspection of structure.
Thus, we have been perennially teaching students how to assign
molar and specific rotationsin effect random numbersto
compounds without explanation of how and why they arise in a
particular structure. This is a pedagogical scandal.
Our long-standing ignorance has its origins in both

experimental and theoretical impediments. We take aim only at
the latter here, but a few remarks about experiment are requisite.
Solution rotations are averages of bisignate tensorial quantities.
The average value of a set of positive and negative numbers can
be many things. By contrast, average values of chemical shielding
tensors are readily interpretable. This is because shielding tensors
are monosignate; if one component is large, the average is large.
For bisignate quantities, average values cannot be reckoned
unless we know what we are averaging. This requires
measurements on oriented structures. We have been working to
improve experimental methods for delivering this information2,3

following in the wake of others.4−7

Typically, contemporary calculations of optical activity tensors
are reduced to pseudoscalars for ease of comparisons with
solution data.8−10 Incisive schemes have been directed at the
interpretation of spatial averages of chiral molecules,11−14 but
achiral molecules challenge the wisdom of this reduction. The
spatial average of the optical activity of all achiral, optically active
molecules is zero. This means that we can make no distinctions
within this class of optically active compounds from solution
measurements alone.
Herein, we make no concessions to chirality or average values

by focusing on oriented, planar π-systems. We do so for the
following reasons: (1) Wave functions under the Hückel
approximations are simply written down or calculated by pencil
and paper. (2) It is easy to graphically compute products of filled
and unfilled π orbitals for planar structures, a necessary
procedure for deriving transition moments. (3) The absolute
(sign indifferent) shapes of optical activity tensor representation
surfaces are given by symmetry and are defined by a single
independent component in the point group C2v. (4) Transition
electric dipole and magnetic dipole moments are orthogonal to
one another, with the most optically active directions found at
the bisectors. With all this in favor of achiral molecules, it is a
wonder that chemists first tried to understand optical activity of
chiral compounds with twisted wave functions and transition
moments disposed in seemingly arbitrary directions. This is a
historical misfortune that arose merely from the overwhelming
preponderance of chiroptical measurements of solutions.
Optical activity of oriented, nonenantiomorphous structures

of symmetry S4 and D2d was predicted in 1882 by Gibbs.
15 In the

process of systematizing crystal physics, Voigt extended Gibbs’
prediction to groups C2v and Cs.

16 The conjecture of Gibbs and
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Voigt that oriented, achiral systems could be optically active was
verified by experiment for crystals in 1962.17,18 The first
quantitative theoretical evaluation of optical activity of a specific
achiral molecule was of cis-butadiene.19 The computation of the
rotatory strength tensor for a π → π* transition revealed that,
although the trace of the tensor was zero, there was a unique off-
diagonal component with a relatively large value. This work was
followed by a computational study of formaldehyde, likewise
with one nonvanishing tensor element.20 Few measurements of
the optical activity of achiral molecules have been reported.21,22

The experimental determination of the full optical activity
anisotropy associated with an achiral molecule is from that of
pentaerythritol in achiral crystals.14,23 (Optical activities of other
achiral crystals have been determined, but these are not built
from discrete molecules.24) Surprisingly, optical rotation (OR)
was observed from polar layers of the planar nematic para-
azoxyanisole inclined by ±7° from a plane of symmetry, even
though the mesogens themselves are nearly centrosymmet-
ric.25,26 A more compelling example comes from the bent core
banana liquid crystal phases.27 Nonlinear optical activity was
observed in polar monolayers of an achiral nitropyridine
derivative.28 Nanofabricated and meta- materials are proving to
be rich in chiroptical phenomena, even in the absence of chirality,
but this subject is only loosely connected to molecular
chiroptics.29

We here aim to use achiral molecules to more clearly articulate
chiroptical structure/property relationships. The difficulty of
explaining long wavelength optical activity in terms of electronic
structure lies in the fact that many excitations far from resonance
contribute to the response at low energy. Indeed, rotatory
strengths of hundreds of excitations had to be summed to achieve
convergence with the results of the linear response method for a
variety of small, chiral, organic compounds such as substituted
oxiranes30 and amino acids.31 Likewise, we had observed that the
computed OR for pentaerythritol did not match that obtained
from our measurements on single crystals23 until first summing
the contributions of >200 excitations.14

On the other hand, the rotatory strength of the first excitation
of (1S,4S)-norbornenone seemed to be a reasonable approx-
imation to the overall OR.30,32−34 It is thus unclear when a vast
summation is required for predicting the long wavelength OR for
all compounds and all classes of compounds.
Computers can carry knowledge of many molecular wave

functions, but human beings cannot. Thus, predictions of OR
delivered by recent advances in chiroptical theory35 often lie
behind advanced computing engines and highly refined
electronic structure calculation algorithms. Answers are not
always easily explained.
Here, we continue to seek shortcuts for particular molecules

that affect interpretation (structure−property relationships) that
actualize thinking about the interactions of light andmatter in the
absence of massive computation. Such models, although only
semiquantitative, are an essential part of understanding and
should become part of the pedagogical foundation of organic
chemistry. In 2007, we determined that a structure-based
understanding of OR could be reached for molecules for which
we have an intuitive understanding of electronic structure, that is,
molecules for which we can write down approximations of the
wave functions straightaway. The average chemist can do this for
diatomics and triatomics but for little else. For this reason, we
examined the OR of the simplest optically active compound of
common experience, H2O, on the basis of judgments that could
be drawn from chalkboard wave functions.21 With the orbitals in

hand, the moments were easily derived by the graphical
procedure of Snatzke (see Figure 1), leading to the qualitative
predictions of the anisotropy of OR for any one-electron
excitation, without resorting to numerical computation.36 At the
same time, this exercise left us wanting because triatomics do not
carry us far into organic chemistry.
There is an important class of organic compounds for which

chemists do have an intuitive understanding of electronic
structure in part: planar conjugated hydrocarbons. Many such
compounds belong to optically active, nonenantiomorphous
point groups (Scheme 1).22 πwave functions can be estimated by

inspection of structure or derived by back-of-the-envelope
Hückel calculations. If the sum-over-π → π* excitations is
sufficient for approximating long-wavelength ORs, then we will
have broached a large class of molecules, central to organic
chemistry pedagogy, whose ORs should be readily interpretable.

■ THEORETICAL BACKGROUND
Optical rotation and circular dichroism (CD) are consequences
of the interactions of transition electric dipole moments (μ) with
transition magnetic dipole moments (m), and transition electric
quadrupole moments (Θ). OR anisotropy is proportional to the
gyration tensor, gαβ.

37
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Scheme 1. Achrial, Conjugated Hydrocarbonsa

a1, cis-butadiene; 2, (2E,4E)-3,4-dimethyl-2,4-hexadiene; 3, (3Z,7Z)-
deca-1,3,7,9-tetraen-5-yne; 4, (3Z,7Z)-deca-1,3,7,9-tetraen-5-yne; 5,
cyclopentadiene; 6, cyclohexatriene; 7, fulvene; 8, 7-methylene-1,3,5-
cycloheptatriene; 9, 3,4-dimethylene-1-cyclobutadiene; 10, 3,5-di-
methylene-1-cyclopentene; 11, 5,6-dimethylene-1,3-cyclohexadiene;
12, 5,7-dimethylene-1,3-cycloheptadiene. The x axis is perpendicular
to the molecular plane, and z is the C2 axis for all compounds. See
structure 6.
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Here, ε is the Levi−Civita operator, E is the energy of the
nonresonant excitation, G′ is the μ−m polarizability and A is the
μ−Θ polarizability. Einstein summations over all combinations
are implied. The tensors G′ and A are defined as
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where j and n represent molecular wave functions and Ejn is the
excitation energy of a transiton from j to n.
CD anisotropy is proportional to the rotatory strength tensor,
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where U and V are defined as

μ= ⟨ | | ⟩⟨ | | ⟩αβ α βU n j j m nIm (5)

μ= ⟨ | | ⟩⟨ |Θ | ⟩αβγ α βγV n j j nRe (6)

By combining eqs 1−6, the gyration tensor is shown to be a
result of summing the rotatory strength tensors over all excited
states (see S4 in the Supporting Information (SI) for stepwise
derivation from eq 1).
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Equations assume that the components are reported in atomic
units. Conversion to cgs or SI units requires the addition of
fundamental constants. All calculations herein were performed
using Gaussian09, version B.01 (see S1 in the Supporting
Information for complete citation). Rotatory strengths are
reported in cgs units where gyration tensors are in atomic
units. To avoid extensive unit conversion, gyration tensors are
constructed from the induced multipolar moments reported in
the rotatory strength output in atomic units according to
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Gaussian09 does not output the induced moments μ, m, and
Θ directly, but rather, the matrix elements associated with the
operators∇, r ×∇, and∇r + r∇, respectively. By combining the
operator expressions with the appropriate constants,37,38 the
moments follow as

μ = ∇
Ejn (9)

= × ∇r
m

2 (10)

Θ = ∇ + ∇r r
E

3( )
2 jn (11)

Ejn is in hartrees.

The gαβ component equation is usually specified in terms of
the gzz component only.

32,37,39
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(See S4 in the SI for stepwise derivation from eq 8.) However,
molecules with symmetry C2v will always have gzz = 0. The only
independent nonzero tensor component for C2v molecules is gxy
= gyx. Therefore, we concern ourselves with only the symmetrized
gxy component equation.
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(See S4 in the SI for stepwise derivation from 8.) To compare
μ−m and μ−Θ interactions, we must separate gxy into its parts:
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m

xy (14)

where

∑ μ μ= −
−

+g
E E

m m
1
2

1
( )xy

m

jn
x y y x2 2

(15)

∑ μ μ μ μ=
−

Θ + Θ − Θ − ΘΘg
E

E E
1
6

( )xy
jn

jn
y zy z xx z yy x zx2 2

(16)

Once the individual interactions are separated, we can use the
predicted tensor components in eqs 15 and 16 and the geometry
of the chemical structures to describe OR based on the induced
multipolar moments. To describe relative transition moments
generated during the π → π* transitions of each structure, we
have used Snatzke’s36 method (illustrated for 10 in Figure 1a) for
the interpretation of charge movement. For a one-electron
excitation between two molecular orbitals, negative charge builds
where orbitals overlap in phase and is depleted where orbitals
overlap out of phase. Hückel coefficients of the π and π* orbitals
can be used to quantify this movement (Figures 1b and 1c). The
relative magnitudes of μ and m for conjugated ∩-shaped
molecules in our set 1−12 (Scheme 1) can be estimated from
the separation of the atoms with the largest charge enhancement
and depletion.
Finally, for reckoning the gyration tensor with experimental

solution data (where available), we must convert the gyration to
OR (ϕ),35a

ϕ π β= +N n
Ec

4 ( 2)
3

2

2 (17)

where ϕ is the OR, N is the number of molecules per unit
volume, n is the refractive index, c is the speed of light (which is 1
if the gyration tensor remains in atomic units), and β is the
average of the G′ tensor eigenvalues divided by the energy (E).

β = −
′ + ′ + ′G G G

E3
xx yy zz

(18)

To translate this to OR in a particular direction, β becomes the
tensor component of g in the desired direction divided by −E.
Therefore, direction-dependent OR is
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This equation shows that there is a negative relationship
between gyration and OR, meaning that −gαβ corresponds to
dextrorotation in the αβ direction, and +gαβ corresponds to
levorotation.

■ RESULTS AND DISCUSSION

Sum-Over-States vs Linear Response Theory. Achiral,
conjugated hydrocarbons were optimized with symmetry
constraints at the B3LYP level of theory using the 6-311+G**

basis set. These structures were used to calculate long-
wavelength (633 nm) gαβ as well as Rαβ

jn for 1000−2000 excited
states (see S3 in the SI for details) using both the 6-311+G** and
aug-cc-pVDZ basis sets. Light of 633 nm is to the low energy side
of the lowest energy transition in all compounds 1−12.
The DFT orbitals were compared with those derived from

simple Hückel theory. DFT excited states dominated by one-
electron π → π* transitions (according to configuration
interaction coefficients) were thereafter designated as π → π*
for our purposes herein. In all cases, the excited state determined
to be the Hückel predicted HOMO → LUMO transition
consisted of only that one electron transition.
The gyration tensor of each molecule was constructed from

the induced multipolar moments in three ways: as sums over all
available states (SOS), as sums over all π → π* designated
excited states, and from theHückel-predicted HOMO→ LUMO
excited state. These tensors were then compared with the
gyration tensor predicted by linear response theory (LRT)
(Table 1). Only the nonzero gxy tensor components are reported.

gxy computed with LRT and as a SOS agreed to within |4%|, as
anticipated; they both aim to deliver OR accurately. This
comparison illustrates the validity of the equations used for all
SOS calculations. SOS plots typically converged (varied ≪1
bohr4) at fewer than 1000 states (see S113−S136 in the SI).
OR derived only from sum-over designated-π → π* states

differed, on average, by |13%|. In each case, the sign of the effect
was matched direction for direction. Considering that only 4−25
Hückel-like excitations were summed rather than the 1000+ for
SOS, we conclude that for simple, achiral, conjugated hydro-
carbons, only the higher-lying occupied orbitals containing the
most polarizable π-electrons are sufficient for the semi-
quantitative accounting of long wavelength OR. The separability
of σ and π electrons has a long, simplifying tradition in organic
chemistry, and it serves in that capacity here.
Among the small number of π → π*-like excitations, the

Hückel HOMO→ LUMO transition was vastly more important
in each case. OR derived from this one transition differed, on
average, by only |22%|. We stress that our goal here is not
numerical accuracy employing the highest levels of theory but,
rather, to find paths through the thickets of electronic structure
to interpret fundamental chiroptical light−matter interactions,
especially for students new to the subject. Given that this single

Figure 1. (a) Scheme of overlap density predicted from HOMO−
LUMO product of 10. (b) Overlap density as in part a but based on
Hückel coefficients. (c) π1 → π6* overlap density. Charge separation in
part b is greater than in part c by this analysis, leading to a larger μ. The
magnetic moment m will be larger, in turn.

Table 1. Computed Gyration Tensors (gxy, bohr
4)

633 nm, aug-cc-pVDZ

LRT SOS π H → La

1 −14.0 −13.6 −19.3 −19.8
2 −16.4 −15.7 −21.0 −21.0
3 −136.1 −133.0 −141.9 −155.6
4 −166.4 −161.9 −171.0 −196.8
5 −6.0 −5.8 −4.8 −8.5
6 −60.9 −59.6 −65.0 −66.4
7 −10.1 −9.8 −8.5 −8.2
8 −65.4 −63.6 −67.0 −57.5
9 −9.6 −9.2 −11.1 −7.2
10 −24.0 −23.7 −31.5 −36.4
11 −80.3 −78.4 −82.1 −85.5
12 −193.5 −189.0 −189.2 −214.0

aHOMO → LUMO transition corresponding to the lowest energy
excitation predicted by DFT, except for 9, for which the second-lowest
energy transition is the dominant state.
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state predicts the LRT values well, we can use the predicted
charge movements of this transition to explain relative
differences in gxy.
Classical Interpretations. The μ−Θ interaction has been

shown to play a significant role in the overall OR of an oriented
system.19,20,35g We split gxy into components associated with the
magnetic dipole gxy

m and the electric quadrupole gxy
Θ (Table 2).

Exclusion of the gxy
Θ contribution from the HOMO→ LUMO gxy

brings greater correspondence with LRT by |3%| on average.
Thus, the quadrupole contribution neither aids nor hinders the
interpretation for this group of compounds. It is conveniently
ignored.
Compound 2 is an exception. The aim of including 2 was to

consider the complication of competing σ electrons by
substituting four hydrogen atoms in 1 by four methyl groups
in 2. At first blush, gxy does not change much, indicating the
unimportance of the σ system, but this would be an infelicitous
interpretation. For 2 only, gxy

Θ is larger in the π→ π* and HOMO
→ LUMO gxy tabulations (Table 2).
To use classical physics to describe the qualitative differences

in OR, we must first determine how the geometry of the
molecule affects transition electric dipole moments (μ = qd) and
transition magnetic dipole moments (m = IA),40 where q is
charge, d is distance, I is current, and A is area. Generally
speaking, the larger the conjugated ribbon, the larger the charge
separation and circulation; therefore, the larger the OR. For
instance, 6 > 5, 8 > 7, 10 > 5, and 12 > 6. Here follows more
particular comparisons drawn from Table 1: (1) Charge
separation of 4 is larger than 3; however, the overall circulation
is relatively unchanged, as judged from the equivalent magnetic
moments. The increase in charge separation results in a higher gxy
for 4. (2) The OR of 5 is less than half of 1, despite the
comparable diene structures. This is presumably because of the
diminished μ (Table 3) that is a consequence of ring closure,
bringing C1 and C4 closer in 5. (3) The responses of 5 and 7 are
identical, despite the extension of the π-system. This illustrates
the predominance of the HOMO−LUMO transition; 7 has zero
HOMO coefficients on the carbon atoms in the exocyclic double
bond (Figure 2). This leads to comparable charge distributions
for both 7 and 5. The same can be said for 6 compared with 8. (4)
The π topology of 9 and 10 is comparable, as are topologies of 11
and 12, but in each pair, the compound with the largest
separation between terminal carbons has a correspondingly
larger OR.

But, what of the sign? In other words, what makes for the
direction of the azimuthal rotation of plane polarized light, and
can we properly predict this rotation from just the HOMO →
LUMO transition? Figure 3 illustrates how rotation is reckoned
in fulvene 7. For the Hückel HOMO→ LUMO excitations and
the transition dipole moments, all we need for a credible
interpretation, μ points in the−y direction andm points in the +x
direction. We stress that only the relative phases of the moments
matter, not the absolute signs. If an incident light wave (k) enters
the molecule from the [+x,+y] direction in Figure 3a, the result
will be observed from [−x,−y] as if viewing the light source. If
positive charge is driven from right to left in the −y direction,
counterclockwise around the path of conjugation, the magnetic
dipole will point in the +x direction according to the coordinate
system in Scheme 1. The moments so generated will make
antiparallel projections onto the wave vector, kxy. The Ek and Hk
fields of the light must be able to excite μ andm some of the time.
Take Ek in the +z direction. Hk points in the [−x,+y] direction
(Figure 3a). According to Faraday’s Law of Induction, a magnetic
moment will be generated in the opposite direction of the field
producing it;Hk has a component in the−x direction, generating
m in the +x direction. SinceHkmust also have a projection in the
+y direction, it generates an electric dipole proportional to−∂H/
∂t41 in the −y direction.

Table 2. Computed Components of Gyration Tensors, gxy
m and gxy

Θ (bohr4)

633 nm, aug-cc-pVDZ

gxy
m gxy

Θ

LRT SOS π H → L LRT SOS π H → L

1 −11.8 −11.5 −13.6 −13.1 −2.2 −2.1 −5.7 −6.7
2 −9.0 −9.1 −7.5 −7.5 −7.4 −6.6 −13.5 −13.4
3 −129.2 −126.7 −125.3 −133.8 −6.7 −6.3 −16.6 −21.8
4 −158.3 −155.5 −149.0 −141.1 −7.8 −6.4 −22.0 −55.7
5 −5.6 −5.6 −5.8 −6.7 −0.2 −0.2 1.0 −1.9
6 −60.8 −59.7 −63.6 −64.0 −0.1 0.0 −1.4 −2.4
7 −9.0 −8.6 −6.8 −7.4 −1.3 −1.2 −1.7 −0.8
8 −61.0 −59.5 −59.9 −58.1 −4.4 −4.1 −7.1 0.6
9 −12.5 −12.3 −13.1 −7.8 3.1 3.1 2.0 0.6
10 −25.0 −24.7 −27.0 −28.7 1.0 1.0 −4.5 −7.7
11 −64.7 −63.2 −65.5 −64.6 −15.5 −15.2 −16.6 −20.9
12 −169.7 −166.2 −171.1 −167.9 −23.8 −22.8 −18.1 −46.1

Table 3. Absolute Values of Computed Transition Moments
in a.ua

633 nm, aug-cc-pVDZ

μy
b mz

c Θxy
d

1 1.5 0.5 4.2
2 1.4 0.2 7.6
3 2.0 1.2 4.9
4 2.7 1.2 10.9
5 0.8 0.5 2.2
6 0.8 1.1 1.2
7 0.3 0.5 1.2
8 0.4 1.0 0.3
9 0.7 0.5 0.7
10 2.2 0.6 2.7
11 1.2 0.7 6.3
12 1.9 0.8 6.5

aHückel HOMO → LUMO. bElectric dipole moment is in the −y
direction. cMagnetic dipole is in the +x direction. dOnly the yz
component of the quadrupole moment is symmetry-allowed.
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The OR sign depends on the direction of the scattered electric
field (Es) that is produced by μ. There is a projection of the
electric dipole moment (μp) that is antiparallel toHk (Figure 3b).
That projection will produce Es that has been retarded by a factor
of π/2 because the moments are time derivatives of the incident
plane waves. However, Es is further retarded by another factor of
π/2 as a consequence of refringent scattering,37,41 the process
whereby scattered wavelets from a plane recombine to form a
secondary wave, and therefore, Es becomes parallel to μp.

41 This
leaves the original electric field Ek in the +z direction and the
scattered field Es in the [+x,−y] direction (Figure 3d). The
resultant of Ek and Es is the field EOR that will be observed from
[+x,−y]. When we rotate the molecule to better see these vectors
from that perspective (Figure 3e), using the yellow bar as a
marker of the cyclopentyl edge of 7, we see that the plane of
polarization has rotated clockwise, a dextrorotation by
convention. This corresponds to a negative gxy tensor component
(Figure 3f) due to the change in sign when converting gyration to
OR (eq 19). Only scattered radiation with a component
orthogonal to the driving field and in-phase or out of phase
(nπ, where n = 0, 1, 2, 3, ...) will lead to a rotation. Intermediate
phase relationships (e.g., nπ/2 where n = 1, 3, 5, ...) will lead to
ellipticity. On the other hand, for k−xy, Hk can produce only
parallel projections of the moments onto the light vector, and
therefore, we observe levorotation from [+x,−y]; the sign of the
response must change each time the observer crosses over a
molecular mirror plane, as in solution where the dot product μ·m
is consequential in determining sign.
The picture above, however, is not complete because it gives

pride of place to Ez. In reality, E can be oriented in any plane
perpendicular to k and the same OR will be measured; the
azimuthal orientation of the light wave does not matter. This
experimental fact has long been reckoned with Fresnel’s
construction that takes linearly polarized light as the super-

position of two counter-propagating circular eigenstates.
However, one can construct a reciprocal picture for Ek in the
xy plane, in which a scattered magnetic field component is
likewise generated.

■ CONCLUSION
The optical activity of oriented, achiral, C2v-symmetric
conjugated dienes, trienes, tetraenes, and pentaenes can be
estimated using nothing more than the characteristics of the
HOMO and LUMO derived from simple Hückel theory. In this
way, we have subverted for this class of compounds the vexing
SOS problem that has plagued the interpretation of long-
wavelength OR and connected the circular birefringence to the
real electronic structure of an important class of organic
compounds. This leads to some recommendations for teachers
of a first course in organic chemistry. (1) Continue to introduce
optical activity as a method for detecting chiral molecules in
solution and establishing enantiopurity, but return to the subject
when discussing the electronic structure of conjugated hydro-
carbons to explain how OR works for a real molecule such as
cyclopentadiene. All that is necessary is to knowledge the
qualitative form of the HOMO and the LUMO. For instance,
Figure 1 shows how the overlap density arises from the HOMO

Figure 2. Overlap densities for HOMO→ LUMO states. Gray (white)
indicates charge enhancement (depletion). Figure 3. Generation of moments from an incident light beam (kxy)

showing how scattered light from 7 leads to dextrorotation in a C2v
molecule. (a) Moments μ and m generated by k. A yellow line segment
marks the cyclopentyl end of the molecule so that it can be oriented
quickly with respect to part e, in which the molecule is now in 3/4 profile
instead of edge on. (b) Projection of μ (μp) antiparallel to Hk. (c)
Generation of scattered electric field (Es) antiparallel to μp; (d) Es after
retardation due to time derivatives and refringent scattering. (e) View of
fields from [−x,−y]. (f) Tensor representation surface and rotation of
linearly polarized light for 7. Purple (green) corresponds to negative
(positive) gyration and therefore dextrorotation (levorotation). Electric
field enters from the lower right and undergoes a dextrorotation by
convention according to the observing eye.
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and LUMO, the relationship of the moments that are generated,
and how the projections of these moments onto a light vector can
predict the sense of the rotation of linearly polarized light. (2) Do
not cite enantiomorphism as a necessary condition for optical
activity.18 It is not, as is well-known in the community of crystal
physicists. Gyration tensor elements for nonenantiomorphous
Laue groups are explicitly given in standard texts.42 In fact, by
treating wave functions of planar molecules, the mechanisms of
optical activity become transparent, in contrast to the intrinsi-
cally twisted wave functions of chiral molecules. Once we break
the infelicitous linkage of chirality and optical activity, we can
begin to more fully articulate chiroptical mechanisms.
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